79 research outputs found

    Answering PICO Clinical Questions: a Semantic Graph-Based Approach

    Get PDF
    International audienceIn this paper, we tackle the issue related to the retrieval of the best evidence that fits with a PICO (Population, Intervention, Comparison and Outcome) question. We propose a new document ranking algorithm that relies on semantic based query expansion bounded by the local search context to better discard irrelevant documents. Experiments using a standard dataset including 423 PICO questions and more than 1,2 million of documents, show that our aproach is promising

    NLM at ImageCLEF 2017 caption task

    Get PDF
    This paper describes the participation of the U.S. National Library of Medicine (NLM) in the ImageCLEF 2017 caption task. We proposed different machine learning methods using training subsets that we selected from the provided data as well as retrieval methods using external data. For the concept detection subtask, we used Convolutional Neural Networks (CNNs) and Binary Relevance using decision trees for multi-label classification. We also proposed a retrieval-based approach using Open-i image search engine and MetaMapLite to recognize relevant terms and associated Concept Unique Identifiers (CUIs). For the caption prediction subtask, we used the recognized CUIs and the UMLS to generate the captions. We also applied Open-i to retrieve similar images and their captions. We submitted ten runs for the concept detection subtask and six runs for the caption prediction subtask. CNNs provided good results with regards to the size of the selected subsets and the limited number of CUIs used for training. Using the CUIs recognized by the CNNs, our UMLS-based method for caption prediction obtained good results with 0.2247 mean BLUE score. In both subtasks, the best results were achieved using retrieval-based approaches outperforming all submitted runs by all the participants with 0.1718 mean F1 score in the concept detection subtask and 0.5634 mean BLUE score in the caption prediction subtask

    Evaluating performance of biomedical image retrieval systems - an overview of the medical image retrieval task at ImageCLEF 2004-2013

    Get PDF
    Medical image retrieval and classification have been extremely active research topics over the past 15 years. Within the ImageCLEF benchmark in medical image retrieval and classification, a standard test bed was created that allows researchers to compare their approaches and ideas on increasingly large and varied data sets including generated ground truth. This article describes the lessons learned in ten evaluation campaigns. A detailed analysis of the data also highlights the value of the resources created

    Combining classifiers for robust PICO element detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Formulating a clinical information need in terms of the four atomic parts which are Population/Problem, Intervention, Comparison and Outcome (known as PICO elements) facilitates searching for a precise answer within a large medical citation database. However, using PICO defined items in the information retrieval process requires a search engine to be able to detect and index PICO elements in the collection in order for the system to retrieve relevant documents.</p> <p>Methods</p> <p>In this study, we tested multiple supervised classification algorithms and their combinations for detecting PICO elements within medical abstracts. Using the structural descriptors that are embedded in some medical abstracts, we have automatically gathered large training/testing data sets for each PICO element.</p> <p>Results</p> <p>Combining multiple classifiers using a weighted linear combination of their prediction scores achieves promising results with an <it>f</it>-measure score of 86.3% for P, 67% for I and 56.6% for O.</p> <p>Conclusions</p> <p>Our experiments on the identification of PICO elements showed that the task is very challenging. Nevertheless, the performance achieved by our identification method is competitive with previously published results and shows that this task can be achieved with a high accuracy for the P element but lower ones for I and O elements.</p

    Preparing a collection of radiology examinations for distribution and retrieval

    Get PDF
    OBJECTIVE: Clinical documents made available for secondary use play an increasingly important role in discovery of clinical knowledge, development of research methods, and education. An important step in facilitating secondary use of clinical document collections is easy access to descriptions and samples that represent the content of the collections. This paper presents an approach to developing a collection of radiology examinations, including both the images and radiologist narrative reports, and making them publicly available in a searchable database. MATERIALS AND METHODS: The authors collected 3996 radiology reports from the Indiana Network for Patient Care and 8121 associated images from the hospitals' picture archiving systems. The images and reports were de-identified automatically and then the automatic de-identification was manually verified. The authors coded the key findings of the reports and empirically assessed the benefits of manual coding on retrieval. RESULTS: The automatic de-identification of the narrative was aggressive and achieved 100% precision at the cost of rendering a few findings uninterpretable. Automatic de-identification of images was not quite as perfect. Images for two of 3996 patients (0.05%) showed protected health information. Manual encoding of findings improved retrieval precision. CONCLUSION: Stringent de-identification methods can remove all identifiers from text radiology reports. DICOM de-identification of images does not remove all identifying information and needs special attention to images scanned from film. Adding manual coding to the radiologist narrative reports significantly improved relevancy of the retrieved clinical documents. The de-identified Indiana chest X-ray collection is available for searching and downloading from the National Library of Medicine (http://openi.nlm.nih.gov/)

    Towards Meta-learning of Deep Architectures for Efficient Domain Adaptation

    Get PDF
    This paper proposes an efficient domain adaption approach using deep learning along with transfer and meta-level learning. The objective is to identify how many blocks (i.e. groups of consecutive layers) of a pre-trained image classification network need to be fine-tuned based on the characteristics of the new task. In order to investigate it, a number of experiments have been conducted using different pre-trained networks and image datasets. The networks were fine-tuned, starting from the blocks containing the output layers and progressively moving towards the input layer, on various tasks with characteristics different from the original task. The amount of fine-tuning of a pre-trained network (i.e. the number of top layers requiring adaptation) is usually dependent on the complexity, size, and domain similarity of the original and new tasks. Considering these characteristics, a question arises of how many blocks of the network need to be fine-tuned to get maximum possible accuracy? Which of a number of available pre-trained networks require fine-tuning of the minimum number of blocks to achieve this accuracy? The experiments, that involve three network architectures each divided into 10 blocks on average and five datasets, empirically confirm the intuition that there exists a relationship between the similarity of the original and new tasks and the depth of network needed to fine-tune in order to achieve accuracy comparable with that of a model trained from scratch. Further analysis shows that the fine-tuning of the final top blocks of the network, which represent the high-level features, is sufficient in most of the cases. Moreover, we have empirically verified that less similar tasks require fine-tuning of deeper portions of the network, which however is still better than training a network from scratch

    Modelling Relevance towards Multiple Inclusion Criteria when Ranking Patients

    Get PDF
    In the medical domain, information retrieval systems can be used for identifying cohorts (i.e. patients) required for clinical studies. However, a challenge faced by such search systems is to retrieve the cohorts whose medical histories cover the inclusion criteria specified in a query, which are often complex and include multiple medical conditions. For example, a query may aim to find patients with both 'lupus nephritis' and 'thrombotic thrombocytopenic purpura'. In a typical best-match retrieval setting, any patient exhibiting all of the inclusion criteria should naturally be ranked higher than a patient that only exhibits a subset, or none, of the criteria. In this work, we extend the two main existing models for ranking patients to take into account the coverage of the inclusion criteria by adapting techniques from recent research into coverage-based diversification. We propose a novel approach for modelling the coverage of the query inclusion criteria within the records of a particular patient, and thereby rank highly those patients whose medical records are likely to cover all of the specified criteria. In particular, our proposed approach estimates the relevance of a patient, based on the mixture of the probability that the patient is retrieved by a patient ranking model for a given query, and the likelihood that the patient's records cover the query criteria. The latter is measured using the relevance towards each of the criteria stated in the query, represented in the form of sub-queries. We thoroughly evaluate our proposed approach using the test collection provided by the TREC 2011 and 2012 Medical Records track. Our results show significant improvements over existing strong baselines

    Formal verification of CNL health recommendations

    Get PDF
    This research is partially supported by EPSRC grant EP/M014290/1.Clinical texts, such as therapy algorithms, are often described in natural language and may include hidden inconsistencies, gaps and potential deadlocks. In this paper, we propose an approach to identify such problems with formal verification. From each sentence in the therapy algorithm we automatically generate a parse tree and derive case frames. From the case frames we construct a state-based representation (in our case a timed automaton) and use a model checker (here UPPAAL) to verify the model. Throughout the paper we use an example of the algorithm for blood glucose lowering therapy in adults with type 2 diabetes to illustrate our approach.Postprin

    Fusion Techniques in Biomedical Information Retrieval

    Get PDF
    For difficult cases clinicians usually use their experience and also the information found in textbooks to determine a diagnosis. Computer tools can help them supply the relevant information now that much medical knowledge is available in digital form. A biomedical search system such as developed in the Khresmoi project (that this chapter partially reuses) has the goal to fulfil information needs of physicians. This chapter concentrates on information needs for medical cases that contain a large variety of data, from free text, structured data to images. Fusion techniques will be compared to combine the various information sources to supply cases similar to an example case given. This can supply physicians with answers to problems similar to the one they are analyzing and can help in diagnosis and treatment planning

    Objective and automated protocols for the evaluation of biomedical search engines using No Title Evaluation protocols

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evaluation of information retrieval techniques has traditionally relied on human judges to determine which documents are relevant to a query and which are not. This protocol is used in the Text Retrieval Evaluation Conference (TREC), organized annually for the past 15 years, to support the unbiased evaluation of novel information retrieval approaches. The TREC Genomics Track has recently been introduced to measure the performance of information retrieval for biomedical applications.</p> <p>Results</p> <p>We describe two protocols for evaluating biomedical information retrieval techniques without human relevance judgments. We call these protocols No Title Evaluation (NT Evaluation). The first protocol measures performance for focused searches, where only one relevant document exists for each query. The second protocol measures performance for queries expected to have potentially many relevant documents per query (high-recall searches). Both protocols take advantage of the clear separation of titles and abstracts found in Medline. We compare the performance obtained with these evaluation protocols to results obtained by reusing the relevance judgments produced in the 2004 and 2005 TREC Genomics Track and observe significant correlations between performance rankings generated by our approach and TREC. Spearman's correlation coefficients in the range of 0.79–0.92 are observed comparing bpref measured with NT Evaluation or with TREC evaluations. For comparison, coefficients in the range 0.86–0.94 can be observed when evaluating the same set of methods with data from two independent TREC Genomics Track evaluations. We discuss the advantages of NT Evaluation over the TRels and the data fusion evaluation protocols introduced recently.</p> <p>Conclusion</p> <p>Our results suggest that the NT Evaluation protocols described here could be used to optimize some search engine parameters before human evaluation. Further research is needed to determine if NT Evaluation or variants of these protocols can fully substitute for human evaluations.</p
    • 

    corecore